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The essence of fluid-mechanical mixing of diffusing and reacting fluids can be traced 
back to kinematics, connectedness of material volumes and transport processes 
occurring across deforming material surfaces. Descriptions based on kinematics of 
homoeomorphic deforming material surfaces (tracers) are restricted solely to con- 
tinuous motions and conveniently analysed by transport equations in Lagrangian 
frames. 

Connectedness of material volumes restricts the mixing topology and generates 
bicontinuous structures characterized by intermaterial-area and striation-thickness 
distributions. Upper bounds for area generation and material-line elongation are 
related to mean values of viscous dissipation and govern the average reaction rate in 
diffusion-controlled reactions. Two concepts are introduced: micromixing, related to 
local flows, rate of stretching and local viscous dissipation, and macromixing, asso- 
ciated with connectedness of isoconcentration surfaces, vorticity and average viscous 
dissipation. 

Several small-scale flows can be used to typify the interplay between fluid mechanics, 
mass and energy transport, and chemical reactions : elliptically symmetrical stagnation 
flows, vortex decay, and swirling flow with uniform stretching. It is proposed that 
complex fluid motions might be interpreted in terms of integrated behaviour of 
populations of small-scale flows distributed in space and time to simulate mixing 
behaviour. 

The objective of this work is to present the foundations of a continuum mixing 
description making reference to earlier approaches to demonstrate computational 
applicability and practical significance. 

1. Introduction 
Turbulent mixing of diffusing and reacting fluids is a process that involves fluid 

mechanics, mass and energy transport, and chemical reactions. In general, these four 
mechanisms govern reaction in any reacting mixture and any reasonable mixing 
description should give an emphasis to all these contributions in proportion to 
the importance of their effects. Applications of these descriptions are relevant to 
combustion, chemical reactors, and are a central theme in physico-chemical 
hydrodynamics. 

The present understanding of mixing and methods of simulation is well represented 
by Brodkey (1975), Murthy (1975) and Hill (1976). Analyses are based fundamentally 
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on the Reynolds, Taylor, von K k m h  tradition of the statistical theory of turbulence 
(e.g. Monin & Yaglom 1971). However, as noted by Marble & Broadwell (1977), some 
of the earliest considerations on reactive turbulent mixing put forward the suggestion 
that a seemingly chaotic mixing field might be modelled by a collection of identifiable 
small-scale reactive surfaces distorted by the turbulent motion (e.g. Damkohler 1940). 
This conjecture found additional support in the works of Hawthorne (1948), Karlovitz, 
Denniston &Wells (1951), Hottel(1952), Wohl et al. (1952), Yamazaki & Tsuji (1960) 
and others. 

Fluid-mechanical mixing descriptions baaed on a concept of small-scale laminar 
reacting elements have not been developed to the level of the statistical descriptions. 
An eclectic list of works generated by this point of view is: Fisher (1968,1974), Mm & 
Toor (1970), Gibson & Libby (1972), Spalding (1976a-q 1978a, b), Marble & Broadwell 
(1977), Ranz (1979a), Ottino (1980). However, considerable improvements on the 
theoretical bases of such analyses are possible; specifically concerning the kinematical 
structure, description of transport in moving frames of reference, local-flow analyses 
and relation with experimental information. 

Although substantial applications of this approach, involving varying degrees of 
complexity, have been made (e.g. Spalding 19783; Marble & Broadwell 1977), the 
theoretical foundations of this point of view are still not clear. It is desirable that 
further applications should proceed on a firmer theoretical basis. 

The objective of the present work is to present a coherent and concise description 
of this alternative point of view and formulate a mixing theory baaed on the concept 
of material surfaces. The paper starts with a continuum description of mixing of multi- 
component reacting mixtures, kinematics and structures produced by continuous 
motions and analyses of transport equations in moving frames. A concept of material 
surface and tracer is introduced to quantify mixing efficiency and linked with local 
small-scale flows containing the essence of local motion-transport interactions. 
Parenthetical reference is given throughout the paper to the more practical compu- 
tational approach offered by Spalding (19783) as well as additional related literature. 

2. Background 
(a)  Kinematical descriptions and mass balances in multi-component mixtures 

The kinematical basis of diffusion lies in the existence of N continuous mappings 
L, a = 1, ..., N, (Bowen 1976) such that 

where X, represents the configuration position of species a and x, its position at the 
present time t .  Each species is assigned a maas density pa = pa(x, t )  such that p = ZtElpa  
is the density of the mixture. Individual velocities are defined as 

and the average mass velocity as 

Pa v =  2 -va. 
a-1 P (3) 
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The material derivatives of any function f following the motion of the &-component 
and the average motion are defined by 

g= X + V , . V f ,  

of = af+v.vf, 
Dt at 

(4) 

respectively. The relative velocities me defined as 

ua = v, - v. 

X = c(t)  +Q(t)  .x, 

(6) 

(7) 

where c( t )  is any vector and Q(t)  is a time-dependent orthogonal tensor. Overbars 
indicate quantities in frame F .  Relative velocities ii, and u, are related by 

A change of frame between any two frames F and F’ is represented by 

0, = Q W .  u,, (8) 

and are therefore indifferent. 
By a material surface we mean a surface f (x, t )  = 0 that moves with the mean 

velocity (3), and by a. tracer we mean a hypothetical material that moves everywhere 
with the mean velocity of the mixture. Since each point of the mixture has a uniquely 
defined mass velocity, the motion of particles of tracer is properly defined. We con- 
ceptualize material lines and surfaces in terms of particles of tracer moving everywhere 
with the mean mass velocity. Material lines and surfaces do not break or change 
topology. In  particular, material surfaces do not diffuse. They are however, permeable 
to the diffusion of all other species. 

A necessary and sufficient condition forf(x, t )  = 0 to be a material surface is 

2 = 0 .  
Dt (9) 

For a material to be a tracer a necessary and sufficient condition is 

Vm-V = Um = 0, (10) 

where subscript m refers to the tracer material. The mass-conservation principle for 
the multi-component reacting mixture is (Bowen 1976, p. 11) 

where w, = pJp, and 8, represents a homogeneous chemical reaction for component a. 
A tracer thus satisfies 

Dwm 
P x =  Q m  

and can in principle be a reacting material, but, in order to avoid utm = 0, 8,  is set 
equal to zero. Under these conditions, isoconcentration surfaces of the tracer are 
connected material surfaces and describe totally the average maas motion of the 
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reacting mixture. The mass balance of species a (11)  is invariant, i.e. its form is 
unchanged for any two frames F and F related by (7). Thus we have 

- - 
p = p ,  t = t; W, =G,, 3, =8,, iia= Q.u,, V = Q . V ,  (13) 

in P.  

For simplicity, overbars will be omitted in subsequent sections. The classical theory 
of diffusion (usually N = 2) is based on a phenomenological relation 

PaUa = DVw,, (15) 

where D is the Fickean diffusion coefficient and paua is the mass flux vector. For a 
multi-component mixture of dilute uncharged materials of nearly constant density, 
and neglecting all diffusion other than ordinary diffusion (Bird, Stewart & Lightfoot 
1960, p. 557), (14) reduces to 

-= Dpa D,  Vzp ,  + Pa, Dt 

where the D, are to be interpreted as effective diffusion coefficients. Since the Fickean 
postulate (15) is invariant (cf. (13)), (16) is also invariant.? The same equation holds 
in any moving frame. A similar transport equation is satisfied for energy transfer; i.e. 
the temperature field satisfies 

-- DT - aV2T + r, 
Dt 

where a is an average thermal diffusivity and r is a generation term that includes 
energy due to chemical reaction, viscous dissipation, and volume change (cf. Bird et al. 
1960, p. 562). In  general, (16) and (17) are coupled through temperature-dependent 
kinetic coefficients. (A special case corresponds to the so-called unit-Lewis-number 
assumption under which (16) and (17) can be reduced to a single partial differential 
equation; see, e.g., Spalding (1978b).) 

( b )  Mixing in lamellar structures 

The assumption of continuous motions (1)  implies connectedness of initially designated 
material surfaces and hence conservation of topological features. Initially designated 
material surfaces of a tracer remain connected in time during fluid-mechanical mixing. 
Sectioning at an instant of time will reveal a lamellar marbled structure (Ranz 1979a). 
It should be noted that, if the initially defined material surface is finite, discontinuous 
structures might arise. (The lamellar-structure assumption is confirmed in principle 
by high-speed photography in turbulent shear flows (Roshko 1975). It is noted that 
Roshko’s flow visualization is a shadowgraph which integrates along the span of the 
flow and not a proper two-dimensional cut. It is believed that a cross-sectional cut 
would have displaced a lamellar marbled structure. A similar indication is found 

t Frame indifference of mass balances is usually assumed, although Lagrangian descriptions 
based on (14) and (16) involving a local flow field are sometimes in error. See the discussion 
following (66). 
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(a )  (b )  

FIGURE 1. Examples of lamellar structures. Dotted lines represent isoconoentration surfaces. 
8 ( t )  represents am instantaneous striation thickness which is changing owing to a local flow. 

in high-speed motion pictures showing the rolling up of a vortex sheet between two 
reading streams A and B to form a product C of a different colour (A. Roshko, Seminar 
presented at the Dept of Aerospace and Mechanics, University of Minnesota, 6 April 
1979). 

Consider a material point in the reacting multi-component mixture with an asso- 
ciated unit vector A and a local orthogonal frame F(el, e,, e,) defined by 

e, = b; e1.e2 = 0, e2.e3 = 0, e,.e, = 0. (18) 

The lamellar-structure hypothesis states that for any fluid-mechanical mixing and 
any point in the mixture it is possible to define a local frame such that 

vw, = (aw,/ay,o,o) in P ,  (19) 

where y is a co-ordinate in direction el which is normal to material planes in a planar 
lamellar structure (figure 1 a) or a radial direction in a vortical flow (figure 16). The 
term aw,/ay is assumed to be a quasi-periodic function of distance y. The period (wave- 
length) specifies a characteristic length scale called the striation thickness s. 
Figure 1 shows examples of two-dimensional cuts of three-dimensional lamellar 
structures. 
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FIGUBE 2. Stretching of a differential material flament at X,. 

FIGURE 3. Stretching of a differential material plane at X,. 

The assumption of lamellar topology and quasi-periodic structure implies the 
periodicity condition aW,/ay = 0 on concentration fields. This boundary or symmetry 
condition for (16) is used by Spalding (19783) under the claim of non-communication 
of folds. Some discussion on non-communication and striation-thickness distribution 
is given by Ottino (1980). 

(c) Kinematics of material elements 

The kinematics of material (tracer) elements is represented by the motion 

x m  = Xm(Xm, t ) ,  X m  = X m ( X m ,  0)s (20) 

which describes the transformation of particles X m  at time t = 0 to position Xm at time 
t. The non-singular deformation gradient F m ( X m ,  t )  and the velocity gradient L m ( X m ,  t) 
associated with the motion Xm are defined respectively by 

The mechanical component of mixing is considered aa a deformation and is computed 
as linear stretch and area stretch of material elements. Thus the linear stretch h of an 
initial differential material filament a t  X m  (figure 2) of length IdXml and orientation 
$I to a point xm at the present time t with length ldXml and orientation I% is given 
by 

A I d x m l / l f i m l -  (22) 

Linear stretch A ,  and orientation fi are related to the motion by 
A h  

A = (Cm:MM)i, C m  = Fz.  F m ,  (23) 

The area stretch 11 of an initial infinitesimal material surface at X m  (figure 3) of initial 
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area ldAl and orientation fi to a point Xm at the present time t with area Ida] and 
orientation fi is given by 

7 = idaI/ldAl. (26) 

(26) 

Area stretch 7 and orientation ii are related to the motion by 

7 3 ((det Fm)* CL': Ah)*, 

(27) 
(det Fm)* (F;'). & 

A il= 

The length of s material line defined by the set of orientations {Ih} is given by 

whereas the area of a material surface defined by the set of orientations {fi} is given by 

A({&},t) =J ((det Fm)*CG':&A)* ldAJ. (29) 
9 0  

z0 and .Yo denote the region of integration in terms of the reference co-ordinates X m .  
Bounds for (28) and (29) are given by the Cauchy-Schwrtn inequality aa 

The material time rate of change of linear and area stretch per unit of present linear 
and area stretch are given respectively by (cf. Bstchelor 1967, p. 132; Ottino, Rmz & 
Macosko 1979) 

where Vm = v haa been used (hence the usefulness of a tracer). Alternative formulaa 
appropriate for compressible fluids are 

The upper bound of (30) and (31) is given by the Cauchy-Schwam inequality 
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D = #(L + LT) ia the stretching tensor such that L = D + 51, where P = +( L - LT) is 
the vorticity tensor. For Newtonian mixtures with viscosity p 

1 Dh 
A Dt ' (6)'' -- (34) 

where B = 2pD : D is the viscous dissipation per unit volume per unit time. Equations 
(34) and (35) can be written as 

Combination of (34), (36) and (35), (37) defines a frame-independent mixing efficiency 
e, = (D : fix%)/( D : D)t, such that e, < 1. Note that e, and e,  have a physical meaning 
of a practical kind and their numerical value provides a measure of the effectiveness of 
mixing flows. Efficiency can be interpreted as a ratio of energy used to create area or 
length to energy dissipated by viscous action. According to this definition elongational 
flows are more effective than shear flows (Ottino 1979). A givenjlow can be eficient w 
ineficient depending on how materials are fed into thejow. 

The necessity of reorientation of material elements to improve mixing efficiency is 
demonstrated clearly by the difference in local rotational speed of vectors normal to 
material lines and interfaces and the directions of maximum stretching of the 
stretching tensor D, a, (i.e. D . a, = cia,, corresponding to maximum stretching rate 
A-'Dh/Dt or (pV)-lD(pr])/Dt. Thus we have 

* Dt = (D +a) .&- (D: A&) a, (38) 

Ddi - =%ai. 
Dt (39) 

Lack of correlation between fi and d, implies low mixing efficiency. Mechanically 
effective mixing flows are those for which 6i. di is a constant or a periodic function 
with a non-zero average value. This concept is related to the vortical/non-vortical 
character of the local flow and is discussed in 9 2 ( e ) .  

( d )  Description of mixing in terms of intermaterial area per unit volume 
The concept of tracer can be exploited to compute average mechanical mixing. 
A property called intermaterial area density a, is defined to quantify the state of a 
system mixed or being mixed. Earlier descriptions of mixing in terms of a, can be 
found in Ranz (19794 and Ottino et al. (1979). 

Consider a material surface composed of particles of tracer which at t = 0 coincides 
with the boundary between reactants. As mixing proceeds, and interdiffusion occurs, 
the material surface moves with the mean mass velocity and is warped by the turbulent 
motion and finely distributed throughout space. The normal distance between points 
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of the surface quantifies the closeness of the reactants and governs the average 
reaction rate. 

We define p*(x, t )  as the mass of tracer per unit volume for the particle which is a t  x at 
time t.  Obviously p* = 0 for points x not belonging to the material surface. If X is the 
location a t  t = 0, p*(X, 0 )  = &(X) is the reference volume density. It follows that 

for any material volume V ,  and 

Dp*+p*v.v = 0. Dt 

We define pn(x,t) as the mam of tracer per unit area of material surface for the 
particle which is at  x and time t on an oriented surface whose normal is fi(x, t ) .  If X is 
the position at t = 0, p ( X ,  0 )  = pN(X) is the reference surface density, whereas 
fi(X, 0 )  = A(X) is the initial field of orientations. It follows that 

g l s p n a a  = o 

for any material surface S and in consequence 

*+pn(V.v-D:fiA) Dt = 0. (43) 

Define %(x, t )  as a, = p * / p  and a$(X) as a$ = p$/p". It follows that 

a, = 4~,1 /de t  F, (44) 

%+% D:fifl= 0. (45) 

The quantity a, is interpreted as area of tracer/volume of fluid and is assumed to be 
a smooth function of space and time. An equivalent measure of state of mechanical 
mixing, striation thickness s, is defined as 

8 l / U v .  (46) 

Large values of a; (i.e. small values of s) are to be interpreted to mean good mechanical 
mixing. In  general both av and s will have spatially distributed valuest which might 
have a large influence on the transport processes occurring in the moving fluids. 
Consider now the mean values of %. Formulas are developed for two systems of 
engineering interest: closed constant-volume systems (e.g. stirred tanks) and 
continuous-flow systems (e.g. pipe flow, tubular reactors). Representations of these 
systems are shown in figures 4 (a, b), respectively. 

t Distribution in % values is likely to affect the reaction at long times. The effects of distri- 
buted .a, values are described qualitatively by Ottino (1980) and analysed by means of con- 
vexity arguments. A distribution of a, values is responsible for diffusional phenomena at scales 
larger than the 8 scale. 

4 F L M  114 
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av 

FIQURE 4. (a) Continuous flow system. ( b )  Closed-volume system. 

For systems of constant volume, integration of (45) over volume V (figure 4) leads to 

D= 
-In a, = e( D : D)B, 
Dt 

where the mean value of any function f(x, t )  is defined by 

J v  
on a material volume 'v. 

Equation (47) is proved by using the relation valid for incompressible fluids: 

(47) 

(Serrin 1960, p. 133). 
Equation (45) is now integrated for a general flow system such as the one repre- 

sented in figure 4 (b). We require the normal velocity component of the velocity v to 
the boundary aV be zero, i.e. 

Vl,,.2 = 0)  

a condition satisfied by most tubular reactors. We define a gradient operation V, over 
the cross-sectional areas, such that 
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where A is a vector perpendicular to A. Equation (45) is rewritten as 

For steady flows of incompressible fluid, (46) reduces to 

a 
V A . ( V h U v ) + z ( V n h O + )  = e(D: D)), 

since 
- h n  
an' v.vAha, = v A . ( v h % ) - ( v A . v ) h a V ,  vA.v = - 

l A v A . ( v h % ) d A  = 0 by the condition vlav.t^ = 0. 

Integration of (51) over the cross-sectional area yields 

;i;;-JAVnlnavdA d = IAe(D : D)adA, 

93 

(50) 

where mean values of any function f are defined by 

, f=- l*fdA* (54) 
l A f w n  d~ 

((f>> = 

S,undA lAdA 
In  terms of a curvilinear co-ordinate z, everywhere tangent to the vectors fi (i.e. 

there exists a 1-1 correspondence between A and z) we obtain 

d e( D : D)t 
-((lnav>) = - 
dz v* 

Equations for the moments of a, can also be developed. Maximum production of 
intermahrial area is given by 

D= = 
-In Dt a, < (D : D)i for constant-volume systems, (56) 

d (D: D)t 
((ln a,)) < - for continuous-flow systems, 

'6 

since e < 1. More practical forms of (56), (57) are 

(57) 

d ( D ) t  
-((hav)) < -, 
dz v* 

(59) 

4-2 
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which are obtained by application of the Holder inequality (Hardy, Littlewood & 
P6lya 1973). 

The right-hand sides of these inequalities are relatively easy to calculate in e known 
flow field and represent limits to the mixing capacity of macroscopic systems in an 
average sense. They are also related simply to T : D for some constitutive equations. 
Values T : D and T : D can be obtained from macroscopic energy balances or experi- 
mental measurements of pressure drops or energy input. Equations (58) ,  (59) represent 
an average mixing description in terms of macroscopic parameters. 

- - - 

3. Transport processes and small-scale flows 
According to the description given here, mixing with diffusion and reaction is 

interpreted in terms of diffusional processes in small-scale flows with kinematics 
specified by the deformation of material surfaces. This section considers transport in 
lamellar structures and typical small-scale flows. 

(a )  Transport processes in lamellar structures 

The assumption of lamellar structure (19) implies that transport equations (16), (17) 
are written locallv as 

in the frame P for the lamellar structures of figure 1. In  this case the velocity wv 
measures the rate of stretching or contraction normal to material interfaces end 
according to (18), (30), (34) 

wu = (D:e,e,)y 6 (62) 

Equations (60), (61) are conveniently transformed in terms of (see appendix) 

(631, (64) 

to 

which describe transport on a non-deforming space 6 and warped time 7 with an 
apparent reaction rate increased by dtldr. Equations (65), (66) represent the local 
interaction of motion and mass or heat transport.? Overall transport processes are 
given by the integrated behaviour of (65), (66). 

t Transport equations in moving (Lagrangian) frames involve a local flow field as given by 
(14) which can also be expressed by approximations such as (67). A careful discussion of this 
point is given by Chan BE Scriven (1970) and is also analysed by Ottino (1980) and Ranz ( 1 9 7 9 ~ ) .  
Local flow-field effects are sometimes incorporated aa domain changes in a non-convective 
diffusion equation (Sperb 1979). This point of view does not, however, correspond to physical 
reality. 
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(b)  Typijied mixing Jlows 

The smallest-scale flow representations of complex flow fields are kinematically 
restricted elliptically symmetrical stagnation flows. Thus the expansion of a flow in 
the frame F' centred on the material particle X, at distance fi is 

- 
v N z.  (VV),,. (67) 

If F' is such that its axes are the axes of principal stretching we have 

D,, 0 0 .  

(vv),, = 0 D,, 0 [ 0 0 D,,. 

so the motion around X, is 

vi 2: Dii(X,, t )  xi, 

I 

(69) 

with D,, + D,, + D,, = V . v and local dissipation e = 2,4021, + D;, + Ilia). Within this 
small-scale flow a small material plane remains planar and initially parallel planes 
remain parallel but come closer together (discussion concerning these flows can be 
found in Ottino et al. (1979)). 

Analyses based on local stagnation flows? cannot explain distributed values of 
mixedness. The essence of striation-thickness distribution seems to be closely related 
to the concept of streamline redistribution (Shearer 1973) and helical or rotational 
flows (L. E. Scriven, personal communication). Local and volume values of the upper 
bound of stretching are related to rotation and acceleration. Thus, according to the 
Bobyleff-Forsythe formula (Serrin 1960, p. 215) the upper bound of stretching can be 
written as 

D :  D = V.a+$w2, (70) 

showing the interplay between acceleration a and the square of vorticity, w2. Stag- 
nation flows produce stretching owing to accelerational components and shear flows 
owing to rotation. The long-time values of efficiency of these flows are constant and 
t-l, respectively. 

To understand the importance of vorticity in small-scale mixing flows we will 
consider two simple local flows: vortex decay and axially symmetric swirling flow with 
uniform stretching. The former is important because of the non-steady character and 
decaying values of local viscous dissipation, while the latter is particularly significant 
because it is precisely the local steady state which is approached locally in many 
turbulent situations. 

t Analyses of local flows are not common in literature discussing mixing from a Lagrangian 
point of view, for most of the approaches have considered linear velocity profiles. More detailed 
flow fields can eventually account for existence of hot spots and thermal explosions. Mixing 
distributions cannot bc created by linear, extensional velocity fields. Mixing distributions ar0 
cliscussed by Ottino (1980). 
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(c) Stretching during vortex decay 
Here we consider the caw in which vorticity is concentrated on a material axis at r = 0 
where there is a line vortex of strength C. Initially the constancy of circulation implies 
Ve = C/2m and subsequent times show a vorticity decay (Batchelor 1967, p. 204) 

C 2 
w(r , t )  =-exp(-l-) ,  4nvt 4vt 

with a velocitv distribution 
I 

v, =“(i-exp(-G)) .  2nr 

At small values of r (g (4vt)t) the motion is a rigid-body rotation and is equal to the 
axially symmetric flow ( 5  3 (d ) )  for t = l/u if C = 4nvw0/u. The length of a material 
line (or area of a material surface of unit width) with initial length Lo and oriented 
initially in the radial direction is 

and shows that L( t )  2: t for t + 00 as in simple shear flows (Ottino 1979). The viscous 
dissipation over the volume of the flow is given only by vorticity contributions (see 
(70)) since 

lim Syv.adv = 0. 
V - P W  

The viscous-dissipation decay is given by 

(76) 

where Lo is the length of the vortex, and the efficiency of mixing is then given by 

1 dL(t1 

Vortex-decay flows are mechanically more effective than shear flows but less effective 
than elongational flows. 

A similar flow is 

The striation-thickness distribution associated with this flow at time t is (Ranz 1979b, 
figure 6) 

nr 
8 1  

(1 +gy. 
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FICWRE 6. stretching of a material line in a vortex with core (equations (73), (74)) 
after two and four turns, respectively. 

The striation-thickness distribution is s 2: 1.9 at a fixed time (T > rl and 8-l ds/dt 1: - l / t  
for C2t2/4m4 > 1). Figure 5 shows the stretching of a material line in a vortex with core 
(equations (78), (79)) after two end four turns, respectively. 

(d )  Stretching and vorticity in extensionalJlow (axially symmetric 
swirling $ow with uniform stretching) 

Turbulence can be conceived as a flow in which large integral steady values of vorticity 
o 2  are obtained due to balance between intensification of vorticity by velocity 
gradients and loss by viscous dissipation. There are some exact solutions which 
illustrate these basic features and the contribution of local flows to material stretching 
and redistribution. Consider an axially symmetric swirling flow with uniform stretching 
(interpreted in a moving frame P )  described in cylindrical co-ordinates (r, 8, z) by 

v, = -aar, v, = az, v, = ve(r). (811, (8% (83) 

This flow has a steedy-state solution when 

a dw 
-r2w+vr-  = 0 
2 dr 

(Batchelor 1967, p. 272), with a velocity distribution 

where wo is a constant, and a swirl velocity given by 

Ve = *o( ar 1 -exp ( -g)). 
The viscous dissipation is produced by both acceleration contributions V.a and 
vorticity contributions w2. This is a highly efficient flow (elongational character) with 
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FIGURE 0. Stretching of a material plane in an axially symmetric swirling flow "th uniform 
stretching. The figure shows the deformation of a plane with initial orientation {N} I e,. Only 
the planes perpendicular to z are not exponentially stretched and concentric surfaces not 
distributed. The striation-thickness distribution increases as ra for t > 0 (see figure 5). 

redistribution contributions (rotation). Figure 6 shows the effects of such a flow on a 
material surface. 

The accelerational contribution is given by 

whereas the total viscous dissipation is given by 

The simpler flow 
v,. = -+ar, v, = az,  v, = 0 (89)) (901, (91) 

has a viscous dissipation produced only by accelerational contributions (V . a) = D : D, 

6 = 3pa2, 

The stretching of a material line is given by 
and has no rotational contribution. 

L(t) N Lo exp (at), 

with an upper bound given by 
(93) 

The stretching of a material plane is given by 

A(t )  N A,exp($at). (95) 
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The upper bound is given by 

A(t)  = A,exp ( (#)#at ) .  (96) 

The swirling flow produces an elongation similar to the vortex decay that is uniformly 
compressed towards t = 0 by the action of w,,. The striation-thickness distributions 
generated by the two motions can be made equal in terms of a dimensionless parameter 
that takes into account the uniform stretching. That is, 

s = 8(r) in vortex decay; (97) 

in swirling flow with uniform stretching. It is not known what the general conditions 
are for this similarity behaviour. 

An estimate of material-stretching in the swirling flow is given by the bounds of 
(93), (94) and (95), (96): 

(99) 

(100) 

e x p ( 4  < a t )  < eXP((#)wY 

exp ( ta t )  < A ( t )  < exp (( %)# at).  

Rotational contributions will improve the stretching given by (93), (94). The upper 
bound is given in terms of accelerational contribution. 

Several other flows may be studied (see e.g. Uberoi 1979). Considerable benefit could 
arise from a detailed study of transport in such flows. Of special interest is the result 
of the integration over the space of a flow and over a distribution of flows. The existence 
of phenomena arising from distribution and interaction has been recognized. Flame- 
shortening is described by Marble & Broadwell (1977) as the phenomenon that occurs 
when two neighbouring reacting layers interact and quickly consume the intervening 
reactant. Isolation of reactants is described by Ottino (1980) as the phenomenon that 
occurs due to spatial stoichiometric distributions. In the context of this work and a t  
the smallest scales these phenomena arise because of the distribution of material 
surfaces produced by the flow. Distributed and non-distributed striation-thickness 
distribution systems will react at  different rates. Thus, reactants will be consumed 
rapidly in the layers surrounding the core of the vortex of figure 5. An irregular 
striation-thickness distribution will generate diffusional processes with length scales 
larger than s. 

It should be emphasized that in the context of this approach the striation-thickness 
distribution is a dependent quantity of fluid-mechanical origin. It should be noted also 
that material surfaces are neither consumed nor annihilated but merely redistributed. 
The flame-shortening phenomena and isolation of reactants might be interpreted as a 
consequence of redistribution of material surfaces. 

4. Conclusions 
The objective has been the formulation and exploitation of a possible point of view 

for describing the mixing of diffusing and reacting fluids. Mixing descriptions based on 
the concepts of material surfaces and homeomorphic deformations are restricted 
solely to continuous motions and conveniently described by transport equations in 
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Lagrangian frames. The fluid-mechanical component of the mixing of multi-component 
diffusing and reacting fluids can be interpreted in terms of the deformation of material 
surfaces (tracers). It forms the basis of the fluid-dynamics-transport-chemical- 
reaction interaction. Consideration of the mechanical component (deformation) as 
the independent variable is particularly appealing if the hydrodynamics is scarcely 
affected by the transport and chemical-reaction processes. 

Hardly anything of general value can be said concerning the local flow distribution 
without specific reference to the particular physical situation. The intermatenal-area 
redistribution seems to be related to vorticity and large-scale motions whereas the 
fluid dynamics-transport-reaction interaction is governed by small-scale flows whose 
stretching capacity is related to local viscous dissipation. 

Application of the framework is not difficult as computations based on similar ideas 
(insofar as the level of complexity is concerned) have been shown to be possible. Appli- 
cations of a lamellar model to homogeneous combustion are presented by Spalding 
(1978b), while a comparison with experimental measurements for the case of fast acid- 
base reaction mixing in a tubular reactor is presented by Ottino (1981). 

Within the framework of the present description the following problems are of 
interest. 

(a )  Effects of local motion on reaction schemes 

Chemical reactions are in general affected by mixing. Average values of conversion, 
yield, selectivity and product distribution depend on the interactions between small- 
scale local flows, mass and energy transfer, and chemical kinetics. Knowledge of these 
interactions can be obtained in principle by judicious selection of local flows and 
through corresponding solutions of the mass-transport and energy-transport equation8 
(1% (17). 

( b )  Fluid-mechanical mixing-path design 

This topic, related to (a), is concerned with the fluid-mechanical history needed to 
produce a desired selectivity of a given product for a given chemical reaction scheme. 
Problems (a )  and (b) are relevant to combustion, air pollution and chemical synthesis. 

( c )  Local thermal or chemical explosion during mixing of unpremixed fast reactions 

Mixing distribution and high generation of contact area (intensive stretching of 
material surfaces) might result in distributed interdiffusion and rate of reaction 
eventually surpassing dissipative effects. Local thermal or chemical explosions can be 
generated by this mechanism. This problem is especially relevant to combustion and 
reaction engineering. 

Appendix. Transformation of the convective diffusion equation 
Here we present the transformation of (61) written as 
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where a = D: elel and c stands for pa. Use the transformations 

7 = 7(Y,  0, Y = Yb, 5); 
5 = 5(Y, t ) ,  t = t(T, E l ;  

+--, 
and compute 

ac ac a7 ac at 
at hat aEat 
- = -- 

a7 - = 0, 
aY 

and impose 

Equations (A 8) and (A 9) will be valid if no contradiction occurs. From (A 7) and (A 8) 
respectively 

(A 101, (A 11) 
85 
aY 7 = T(t), - = h(t), 

where h(t) is a function o f t .  From (A 11) 

and by combination of (A 9) and (A 12) 

From (A 11) 

%+ay- a5 a5 = 0. 
aY 

5 = h(t)y+const., 

where const. = 0 without loss of generality. 
By substitution of (A 11)  and (A 14) into (A 13) 

d* + ah(t) = 0, at 

d In h(t) d In s(t) 
a=--=- , s(t) = (h(t))-l. at dt  
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Substitution of (A 4)-(A G) into (A 1) and use of the results (A 7)-(A 9) and (A 18) gives 

which corresponds to  (61). The proof of (60) is entirely similar. 
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